

THE FREDHOLM ALTERNATIVE AND ITS APPLICATION
REAL ANALYSIS AND FUNCTIONAL ANALYSIS

Heyuan Yao
Mentor: Yipeng Wang

Directed Reading Program
Department of Mathematics, Columbia University

Part I

THE STATEMENT IN LINEAR ALGEBRA

Theorem 1

If V is an n -dimensional vector space and $T : V \rightarrow V$ is a linear transformation, then exactly one of the following holds:

- ▶ For each vector \mathbf{v} in V there is a vector \mathbf{u} in V so that $T(\mathbf{u}) = \mathbf{v}$. In other words: T is surjective (and so also bijective, since V is finite-dimensional).
- ▶ $\dim(\ker(T)) > 0$.

Part II

DEFINITIONS AND THE THEOREM

Definition 2 (Hilbert Space)

A linear space X over the field of real or complex numbers is called Euclidean if $X \times X$ is equipped with a function (\cdot, \cdot) with values in the respective field such that:

- ▶ $(x, x) \geq 0$ and, in addition, $(x, x) = 0$ only for $x = 0$,
- ▶ $(x, y) = \overline{(y, x)}$ for all $x, y \in X$ (in the real case: $(x, y) = (y, x)$),
- ▶ $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ for all $x, y, z \in X$ and all scalars α, β

A function with the stated properties is called an inner product. A complete Euclidean space is called a **Hilbert space**.

Definition 3 (Compact Operator)

Let X and Y be Hilbert spaces. A linear operator $K : X \rightarrow Y$ is called **compact** if it takes the unit ball to a set with compact closure.

Theorem 4 (The Fredholm Alternative)

Let K be a compact operator on a complex or real Banach space X . Then

$$\text{Ker}(K-I)=0 \Leftrightarrow (K-I)(X)=X,$$

i.e., **EITHER** the equation

$$Kx-x = y$$

is uniquely solvable for all $y \in X$,

OR for some vector $y \in X$ it has no solutions and then the homogeneous equation

$$Kx-x = 0$$

has nonzero solutions.

Part III

APPLICATION: THE POISSON EQUATION

Let's consider the Poisson Equation

$$\begin{cases} -\Delta u = f & \text{in } D \\ u = 0 & \text{on } \partial D \end{cases}$$

where $u \in W_0^{1,2}(D)$, $f \in \mathcal{L}^2(D)$ and D is an open bounded subset of \mathbb{R}^n .

We want to show $f \in \mathcal{L}^2(D)$, $\exists!$ weak solution $u \in W_0^{1,2}(D)$ solves the Poisson equation.

SKETCH

STEP 1: WEAK SOLUTION

STEP 2: LAX-MILGRAM

$$\forall \phi \in W_0^{1,2}(D), \text{ we have } \int_D \langle \nabla u, \nabla \phi \rangle = \int_D \phi f$$

Theorem 5 (Lax-Milgram)

Let H be a Hilbert space and $B : H \times H \rightarrow H$ a bilinear map s.t.

- B is bounded, that is, $\exists K > 0$ s.t. $|B[x, y]| \leq K\|x\|\|y\|$, $\forall x, y \in H$;
- B is coercive, that is, $\exists c > 0$ s.t. $B(x, x) \geq c\|x\|^2$, $\forall x \in H$

If $F \in H^*$ is any bounded linear functional then

$$\exists! w_F \in H \text{ s.t. } F(x) = B(w_F, x) \forall x \in H$$

According to Lax-Milgram, we have $\forall g \in \mathcal{L}^2(D)$,

$$-\Delta u + u = g$$

has a unique weak solution. Thus we can define

$$(-\Delta + I)^{-1} : \mathcal{L}^2(D) \rightarrow W_0^{1,2}(D) \hookrightarrow \mathcal{L}^2(D)$$

SKETCH

STEP 3: COMPACTNESS OF $(-\Delta + I)^{-1}$

- ▶ $(-\Delta + I)^{-1} : \mathcal{L}^2(D) \rightarrow W_0^{1,2}(D)$ is continuous;
- ▶ $W_0^{1,2}(D) \hookrightarrow \mathcal{L}^2(D)$ is compact

Theorem 6 (Rellich–Kondrachov theorem)

Let $\Omega \subset \mathbb{R}^n$ be an open, bounded Lipschitz domain, and let $1 \leq p < n$. Set

$$p^* = \frac{np}{n-p},$$

Then the Sobolev space $W^{1,p}(\Omega)$ is continuously embedded in the \mathcal{L}^p space $\mathcal{L}^{p^*}(\Omega)$ and is compactly embedded in $\mathcal{L}^q(\Omega)$ for every $1 \leq q < p$.

- ▶ $(-\Delta + I)^{-1}$ is compact.

SKETCH

STEP 4: FREDHOLM ALTERNATIVE

STEP 5: REPHRASING

EITHER the equation

$$u - (-\Delta + I)^{-1}u = h$$

is uniquely weakly solvable for all $h \in W_0^{1,2}(D)$,

OR,

$$u - (-\Delta + I)^{-1}u = 0$$

has non-trivial weak solutions.

Let's rephrase the result if we let $f = (-\Delta + I)^{-1}h \in \mathcal{L}^2(D)$,

EITHER the equation

$$-\Delta u = f$$

has unique weak solution for all $f \in \mathcal{L}^2(D)$,

OR,

$$-\Delta u = 0$$

has non-trivial weak solutions.

STEP 6: WEYL'S LEMMA AND THE STRONG MAXIMUM PRINCIPLE

By Weyl's Lemma and strong maximum principle, we have

$$Ker(-\Delta) = 0$$

Thus the equation

$$-\Delta u = f$$

has unique weak solution for all $f \in \mathcal{L}^2(D)$.

REFERENCES

Bogachev, V. I., Smolyanov, O. G. (2020). Real and functional analysis. Springer International Publishing.

Evans, L. C. (2010). Partial differential equations (Vol. 19). American Mathematical Soc..