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Part I

THE STATEMENT IN LINEAR ALGEBRA
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Theorem 1
If V is an n-dimensional vector space and T : V → V is a linear transformation, then exactly one of the
following holds:
▶ For each vector v in V there is a vector u in V so that T(u)= v. In other words: T is surjective (and so

also bijective, since V is finite-dimensional).
▶ dim(ker(T))>0.
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Part II

DEFINITIONS AND THE THEOREM
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Definition 2 (Hilbert Space)

A linear space X over the field of real or complex numbers is called Euclidean if X × X is equipped
with a function ( · , · ) with values in the respective field such that:
▶ (x, x) ≥ 0 and, in addition, (x,x) = 0 only for x = 0,
▶ (x, y) = (y, x) for all x, y ∈ X (in the real case: (x,y) = (y,x)),
▶ (αx + βy, z) = α(x, z) + β(y, z) for all x, y, z ∈ X and all scalars α, β

A function with the stated properties is called an inner product. A complete Euclidean space is
called a Hilbert space.

Definition 3 (Compact Operator)

Let X and Y be Hilbert spaces. A linear operator K : X → Y is called compact if it takes the unit ball
to a set with compact closure.
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Theorem 4 (The Fredholm Alternative)
Let K be a compact operator on a complex or real Banach space X. Then

Ker(K-I)=0 ⇔ (K-I)(X)=X,

i.e., EITHER the equation

Kx-x = y

is uniquely solvable for all y ∈ X,
OR for some vector y ∈ X it has no solutions and then the homogeneous equation

Kx-x = 0

has nonzero solutions.
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Part III

APPLICATION: THE POISSON EQUATION
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Let’s consider the Poisson Equation

{
−∆u = f in D

u = 0 on ∂D

where u ∈ W1,2
0 (D), f ∈ L2(D) and D is an open bounded subset of Rn.

We want to show f ∈ L2(D), ∃! weak solution u ∈ W1,2
0 (D) solves the Poisson equation.
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SKETCH
STEP 1: WEAK SOLUTION

STEP 2: LAX-MILGRAM

∀ϕ ∈ W1,2
0 (D), we have

∫
D
⟨∇u,∇ϕ⟩ =

∫
D
ϕf

Theorem 5 (Lax-Milgram)

Let H be a Hilbert space and B : H × H → H a bilinear map s.t.
▶ B is bounded, that is, ∃ K > 0 s.t. |B[x, y]| ≤ K∥x∥∥y∥, ∀x, y ∈ H;
▶ B is coercive, that is, ∃ c > 0 s.t. B(x, x) ≥ c∥x∥2, ∀x ∈ H

If F ∈ H∗ is any bounded linear functional then

∃!wF ∈ Hs.t.F(x) = B(wF, x)∀x ∈ H

According to Lax-Milgram, we have ∀g ∈ L2(D),

−∆u + u = g

has a unique weak solution. Thus we can define

(−∆+ I)−1 : L2(D) → W1,2
0 (D) ↪→ L2(D)
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SKETCH
STEP 3: COMPACTNESS OF(−∆+ I)−1

▶ (−∆+ I)−1 : L2(D) → W1,2
0 (D) is continuous;

▶ W1,2
0 (D) ↪→ L2(D) is compact

Theorem 6 (Rellich–Kondrachov theorem)

Let Ω ⊂ Rn be an open, bounded Lipschitz domain, and let 1 ≤ p < n. Set

p∗ =
np

n − p
,

Then the Sobolev space W1,p(Ω) is continuously embedded in the Lp space Lp∗(Ω) and is compactly embedded
in Lq(Ω) for every 1 ≤ q < p.

▶ (−∆+ I)−1 is compact.
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SKETCH
STEP 4: FREDHOLM ALTERNATIVE

STEP 5: REPHRASING

EITHER the equation
u − (−∆+ I)−1u = h

is uniquely weakly solvable for all h ∈ W1,2
0 (D),

OR,
u − (−∆+ I)−1u = 0

has non-trivial weak solutions.

Let’s rephrase the result if we let f = (−∆+ I)−1h ∈ L2(D),
EITHER the equation

−∆u = f

has unique weak solution for all f ∈ L2(D),
OR,

−∆u = 0

has non-trivial weak solutions.
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STEP 6: WEYL’S LEMMA AND THE STRONG MAXIMUM PRINCIPLE

By Weyl’s Lemma and strong maximum principle, we have

Ker(−∆) = 0

Thus the equation
−∆u = f

has unique weak solution for all f ∈ L2(D).
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