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Part1

THE STATEMENT IN LINEAR ALGEBRA
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Theorem 1

If V is an n-dimensional vector space and T : V — V is a linear transformation, then exactly one of the
following holds:
» For each vector v in V there is a vector win V so that T(u)= v. In other words: T is surjective (and so
also bijective, since V is finite-dimensional).
» dim(ker(T))>0.
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Part II

DEFINITIONS AND THE THEOREM



Definition 2 (Hilbert Space)
A linear space X over the field of real or complex numbers is called Euclidean if X x X is equipped
with a function ( -, - ) with values in the respective field such that:

» (x,x) > 0and, in addition, (x,x) = 0 only for x =0,

> (x,y) = (y,x) for all x,y € X (in the real case: xy) = (yx)),

» (ax+ By,z) = a(x,z) + B(y,z) for all x,y,z € X and all scalars «,

A function with the stated properties is called an inner product. A complete Euclidean space is
called a Hilbert space.

Definition 3 (Compact Operator)

Let X and Y be Hilbert spaces. A linear operator K : X — Y is called compact if it takes the unit ball
to a set with compact closure.



Theorem 4 (The Fredholm Alternative)

Let K be a compact operator on a complex or real Banach space X. Then
Ker(K-1)=0 < (K-I)(X)=X,
i.e., EITHER the equation
Kxx=y

is uniquely solvable for all y € X,
OR for some vector y € X it has no solutions and then the homogeneous equation

Kx-x=0

has nonzero solutions.



Part III

APPLICATION: THE POISSON EQUATION
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Let’s consider the Poisson Equation

—Au=f inD
u=~0 on 0D

where u € Wé’z(D),f € £2(D) and D is an open bounded subset of R".

We want to show f € £2(D), 3! weak solution u € Wé’2(D) solves the Poisson equation.



SKETCH
STEP 1: WEAK SOLUTION
STEP 2: LAX-MILGRAM

Yo € Wy?(D), we have / (Vu, Vo) = / of
D D

Theorem 5 (Lax-Milgram)

Let H be a Hilbert space and B : H x H — H a bilinear map s.t.
» B is bounded, that is, 3 K > 0s.t. |B[x,y]| < K||x|/|ly||, Vx,y € H;
» B is coercive, that is, 3¢ > 0 s.t. B(x,x) > c||x||?, Vx € H

If F € H* is any bounded linear functional then

lwr € Hs.t.F(x) = B(wg,x)Vx € H

According to Lax-Milgram, we have Vg € £2(D),
—Au+u=g
has a unique weak solution. Thus we can define

(~A+1)71: £2(D) — Wy*(D) < L£3(D)



SKETCH
STEP 3: COMPACTNESS OF(—A +I)~!

> (~A+1)1: £2(D) — Wy*(D) is continuous;

> Wé’Z(D) < £2(D) is compact
Theorem 6 (Rellich—-Kondrachov theorem)

Let Q0 C R" be an open, bounded Lipschitz domain, and let 1 < p < n. Set

«_ P

p Tu-p

i

Then the Sobolev space WP (R2) is continuously embedded in the LP space LF" () and is compactly embedded
in L1(Q) for every 1 < g < p.

> (—A +1)~!is compact.



SKETCH
STEP 4: FREDHOLM ALTERNATIVE
STEP 5: REPHRASING

EITHER the equation
u—(—A+Dlu=nh

is uniquely weakly solvable for all 1 € Wé’Z(D),
OR,
u—(—A+0Hu=0

has non-trivial weak solutions.

Let’s rephrase the result if we let f = (—A +1)~'h € £3(D),

EITHER the equation

—Au=f
has unique weak solution for all f € £2(D),
OR,

—Au=0

has non-trivial weak solutions.
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STEP 6: WEYL'S LEMMA AND THE STRONG MAXIMUM PRINCIPLE

By Weyl’s Lemma and strong maximum principle, we have
Ker(—A) =0

Thus the equation
—Au=f

has unique weak solution for all f € £2(D).
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